IB Maths SL mini Topic Exam: Functions & Equations

Recommended Time: 40mins. Total Mark: /49

Student Name: ____________________ Teacher: ______________

Question 1

[Maximum mark: 6]

Let \(f(x) = x^3 \) and \(g(x) = 2x - 1 \).

(a) Find \(g^{-1}(x) \). [2]

(b) Find \(g \circ f(x) \). [2]

(c) Solve \(g \circ f(x) = 0 \). [2]

Working

/6

Markscheme & Video & Solutions to this exam - www.revisionvillage.com/b3k
Question 2

[Maximum mark: 6]

Let \(f(x) = \sqrt{x + 7} \), for \(x \geq -7 \).

(a) Find \(f^{-1}(3) \). [3]

(b) Let \(g \) be a function such that \(g^{-1} \) exists for all real numbers. Given that \(g(9) = 4 \), find \((f \circ g^{-1})(4) \). [3]

Working

/6
Question 3

[Maximum mark: 7]

Let \(f(x) = x^2 + kx \) and \(g(x) = x + k \). The graphs of \(f \) and \(g \) intersect at two distinct points.

Find the values of \(k \).

Working
Question 4

[Maximum mark: 15]

Let \(f(x) = 3x^2 + 12x + 9 \)

(a) (i) Find the y-intercept of \(f \);

(ii) Find the x-intercepts of \(f \). \[4\]

The function can be written in the form \(f(x) = a(x - h)^2 + k \).

(b) Find the value of

(i) \(a \);

(ii) \(h \);

(iii) \(k \). \[5\]

(c) (i) Write down the co-ordinate of the vertex of \(f \).

(ii) Write down the equation of the axis of symmetry of \(f \). \[2\]

(d) The function \(g(x) \) is obtained from the graph of \(f \) by a reflection in the x-axis, followed by a translation by the vector \(\begin{bmatrix} 0 \\ 4 \end{bmatrix} \). Find \(g \), giving your answer in the form \(g(x) = Ax^2 + Bx + C \). \[4\]
Question 5

[Maximum mark: 15]

Let \(f(x) = \frac{5}{x+1} \) and \(g(x) = x - 3 \).

(a) For the graph of \(f \), find

(i) y-intercept;

(ii) x-intercept;

(iii) the equation of the vertical asymptote. [5]

(b) The graph of \(f \) and \(g \) intersect at \(A(x, y) \) and point \(B(x, y) \). Find the coordinates of points \(A \) and \(B \). [5]

(c) Find the equation of the linear line that passes through \(A \) and \(B \), in the form of \(y = mx + c \). [3]

(d) Write down the gradient of the line that is perpendicular to the line passing through \(A \) and \(B \). [2]

Working

More working space over page