New

Subjects

IB Math AA HL - Questionbank

Exponents & Logs

Exponent & Log Laws, Solving Exponential & Logarithmic Equations…

Paper

Paper 1
Paper 2

Difficulty

Easy
Medium
Hard

View

Question 1

no calculator

easy

[Maximum mark: 6]

Find the value of each of the following, giving your answer as an integer.

  1. log66\log_6 6. [2]

  2. log69+log64\log_6 9 + \log_6 4. [2]

  3. log672log62\log_6 72 - \log_6 2. [2]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 2

no calculator

easy

[Maximum mark: 7]

Find the value of each of the following, giving your answer as an integer.

  1. log10100\log_{10} 100. [2]

  2. log1050+log102\log_{10} 50 + \log_{10} 2. [2]

  3. log104log1040\log_{10} 4 - \log_{10} 40. [3]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 3

no calculator

easy

[Maximum mark: 7]

Let p=ln2p=\ln 2 and q=ln6q = \ln 6. Write down the following expressions in terms of pp and qq.

  1. ln12\ln 12 [2]

  2. ln3\ln 3 [2]

  3. ln48\ln 48 [3]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 4

no calculator

easy

[Maximum mark: 7]

Let a=ln2a=\ln 2 and b=ln10b = \ln 10. Write down the following\text{following} expressions\text{expressions} in terms of aa and bb.

  1. ln20\ln 20 [2]

  2. ln5\ln 5 [2]

  3. ln160\ln 160 [3]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 5

no calculator

easy

[Maximum mark: 6]

Let log2a=p\log_2 a = p, log2b=q\log_2 b = q, log2c=r\log_2 c = r. Write down the following expressions in terms of pp, qq and rr.

  1. log2(abc)\log_2\Big(\dfrac{ab}{c}\Big) [2]

  2. log2(a2cb3)\log_2\Big(\dfrac{a^2c}{b^3}\Big) [2]

  3. logab\log_a b [2]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 6

no calculator

easy

[Maximum mark: 5]

Solve the equation 2lnx=ln25+62\ln x=\ln 25 +6, giving your answer in the form x=aebx=ae^b where aa, bZ+b \in \mathbb{Z}^+.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 7

no calculator

easy

[Maximum mark: 5]

Consider b=log8081×log7980×log7879××log34b = \log_{80}81\times\log_{79}80\times\log_{78}79\times\dots\times\log_{3}4. Given that bZb\in\mathbb{Z}, find the value of bb.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 8

no calculator

easy

[Maximum mark: 5]

Consider a=log6364×log6263×log6162××log23a = \log_{63}64\times\log_{62}63\times\log_{61}62\times\dots\times\log_{2}3. Given that aZa\in\mathbb{Z}, find the value of aa.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 9

no calculator

easy

[Maximum mark: 6]

Let log3p=u\log_3 p = u, log3q=v\log_3 q = v, log3r=w\log_3 r = w. Write down the following expressions in terms of uu, vv and ww.

  1. log3(rpq)\log_3\Big(\dfrac{r}{pq}\Big) [2]

  2. log3(p4rq5)\log_3\Big(\dfrac{p^4r}{q^5}\Big) [2]

  3. logpqr\log_{pq} r [2]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 10

no calculator

easy

[Maximum mark: 6]

Let a=log5ba = \log_5b, where b>0b > 0. Write down each of the following expressions
in terms of aa.

  1. log5b4\log_5b^4 [2]

  2. log5(25b)\log_5 (25b) [2]

  3. log25b\log_{25}b [2]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 11

no calculator

easy

[Maximum mark: 6]

  1. Write the expression 4ln2ln84\ln 2 - \ln 8 in the form of lnk\ln k, where kZk \in \mathbb{Z}. [3]

  2. Hence, or otherwise, solve 4ln2ln8=ln(2x)4\ln 2 - \ln 8 = -\ln (2x). [3]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 12

no calculator

easy

[Maximum mark: 5]

Solve the equation log3xlog35=1+log34\log_3 x - \log_3 5 = 1 + \log_3 4 for xx.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 13

no calculator

easy

[Maximum mark: 5]

Solve the equation log5xlog54=2+log53\log_5 x - \log_5 4 = 2 + \log_5 3 for xx.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 14

calculator

easy

[Maximum mark: 6]

Given that loga2=5\log_a 2 = 5.

  1. Find the exact value of loga32\log_a 32. [2]

  2. Find the exact value of loga2\log_{\sqrt{a}} 2. [2]

  3. Find the value of aa, giving your answer correct to 33 significant figures. [2]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 15

calculator

easy

[Maximum mark: 6]

Given that logb3=10\log_b 3 = 10.

  1. Find the exact value of logb81\log_b 81. [2]

  2. Find the exact value of logb23\log_{b^2} 3. [2]

  3. Find the value of bb, giving your answer correct to 33 significant figures. [2]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Video (c)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 16

no calculator

easy

[Maximum mark: 5]

Find the values of xx when 27x+2=(19)2x+427^{x+2} = \left(\dfrac{1}{9}\right)^{2x+4}.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 17

no calculator

easy

[Maximum mark: 6]

  1. Write down the value of

    1. log28\log_2 8;

    2. log5(125)\log_5\Big(\dfrac{1}{25}\Big);

    3. log93\log_9 3. [3]

  2. Hence solve log28+log5(125)+log93=log16x\log_2 8 + \log_5\Big(\dfrac{1}{25}\Big) + \log_9 3 = \log_{16} x.[3]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 18

no calculator

easy

[Maximum mark: 6]

  1. Write down the value of

    1. log381\log_3 81;

    2. log2(18)\log_2\Big(\dfrac{1}{8}\Big);

    3. log255\log_{25} 5. [3]

  2. Hence solve log381+log2(18)+log255=log9x\log_3 81 + \log_2\Big(\dfrac{1}{8}\Big) + \log_{25} 5 = \log_{9} x.[3]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 19

no calculator

easy

[Maximum mark: 6]

  1. Write the expression 3ln3ln93\ln 3 - \ln 9 in the form lna\ln a, where aZa \in \mathbb{Z}. [3]

  2. Hence, or otherwise, solve 3ln3ln9=lnx3\ln 3 - \ln 9 = -\ln x. [3]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 20

no calculator

easy

[Maximum mark: 5]

Consider an arithmetic sequence with u1=5u_{1}=5 and u6=log332u_{6}=\log_3 32.

Find the common difference of the sequence, expressing your answer in the form log3a\log_3 a, where aQa \in \mathbb{Q}.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 21

no calculator

easy

[Maximum mark: 5]

Solve log6(x)+log6(x5)=2\log_6(x) + \log_6(x-5) = 2, for x>5x > 5.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 22

no calculator

easy

[Maximum mark: 5]

Solve log4(x12)+log4(x)=3\log_4(x-12) + \log_4(x) = 3, for x>12x > 12.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 23

no calculator

easy

[Maximum mark: 5]

Solve the equation log2(x22x+1)=1+log2(x1)\log_2(x^2-2x+1) = 1 + \log_2(x-1).

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 24

no calculator

easy

[Maximum mark: 5]

Solve the equation log3(x24x+4)=1+log3(x2)\log_3(x^2-4x+4) = 1 + \log_3(x-2).

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 25

no calculator

easy

[Maximum mark: 5]

Find the values of xx when 25x22x=(1125)4x+225^{x^2-2x} = \left(\dfrac{1}{125}\right)^{4x+2}.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 26

no calculator

easy

[Maximum mark: 6]

Find the value of

  1. log798log72\log_7 98 - \log_7 2; [2]

  2. 49log7649^{\log_7 6}. [4]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 27

no calculator

easy

[Maximum mark: 6]

Find the value of

  1. log575log53\log_5 75 - \log_5 3; [2]

  2. 25log5825^{\log_5 8}. [4]

easy

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 28

no calculator

easy

[Maximum mark: 5]

Solve the equation 9x+23x+1=19^x + 2\cdot3^{x+1} = 1.

easy

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 29

no calculator

medium

[Maximum mark: 8]

In an arithmetic sequence, u1=logk(ab)u_1 = \log_k (ab), u2=logk(b)u_2 = \log_k(b), where k>1k > 1 and a,b>0a,b > 0.

  1. Show that d=logk(a)d = -\log_k(a).[2]

  2. Let a=k4a = k^4 and b=k16b = k^{16}. Find the value of n=110un\displaystyle \sum_{n=1}^{10} u_n. [6]

medium

Formula Booklet

Mark Scheme

Video (a)

Video (b)

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 30

no calculator

medium

[Maximum mark: 5]

Solve the equation 4log5x1log35=3log5(3x2)4\hspace{0.05em}\log_5 \sqrt{x} - \dfrac{1}{\log_3 5} = 3\log_5\left(3x^2\right), where x>0x>0.

medium

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 31

no calculator

medium

[Maximum mark: 7]

Consider f(x)=logk(8x2x2)f(x) = \log_k(8x-2x^2), for 0<x<40 < x < 4, where k>0k > 0.

The equation f(x)=3f(x) = 3 has exactly one solution. Find the value of kk.

medium

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 32

no calculator

medium

[Maximum mark: 6]

Solve log3(sinx)log3(cosx)=1\log_{\sqrt{3}}(\sin x) - \log_{\sqrt{3}}(\cos x) = 1, for 0<x<π20 < x < \dfrac{\pi}{2}.

medium

Formula Booklet

Mark Scheme

Video

Revisit

Check with RV Newton

Formula Booklet

Mark Scheme

Solutions

Revisit

Ask Newton

Question 33

no calculator

medium

[Maximum mark: 5]

Solve the equation 154a=81a+215^{4a} = 81^{a+2} for aa. Express your answer in terms of ln3\ln 3 and ln5\ln 5.

medium

Formula Booklet

Mark Scheme

Video

Revisit